Monitoring Cathodic Protection of Natural Gas Pipelines

Period #8

Basic Corrosion Course
2017
Introduction

Chapter Objective:

– Reasons to monitor
– What to monitor
– Regulatory Requirements
– Record Keeping
Reasons to Monitor

• The “U.S. Department of Transportation Regulations for Gas Pipelines”, gives specific requirements for monitoring cathodic protection systems.

 – D.O.T. regulations
 • 192 Subpart I
 • 195 Liquid

• Cathodic protection is necessary to enhance public safety.
Reasons to Monitor

• **Economics**
 – Repairs/leaks
 • Including cost of excavations
 – Lost Product
 • Lost revenue
 – Project Investment
 • Limited dollars
 • Need to spend money wisely
 – Cost of Monitoring
 • New technologies - “smart” test stations (RMU)
Reasons to Monitor

• **Rectifiers**
 - Depend On Constant Power
 - Cable Breaks
 - Anode Failures

• **Galvanic Anodes**
 - Calculated Life
 - Determine their Effectiveness
Reasons to Monitor

• New Construction
 – P/L Crossings
 • Shorted pipeline
 • Stray current
 – Damage to Structures
 • Coating damage
 – UST’S at Gas Stations
 • Foreign rectifier interference
 – Inform Personnel regarding C.P.
 • Additional training
 • Information sharing
Reasons to Monitor

• **Excellent Source for maintaining a sound cathodic protection system.**

 - NACE Standard Practice –SPO169-2013** (pipelines), SP0285-2011 (underground tanks), *Control of External Corrosion on Underground or Submerged Metallic piping System.*
What to Monitor

• **Pipe to Soil Potential:**
 – Once each calendar year, at intervals of no more than 15 months.
 – Separately protected sections not exceeding 100’ (10% each year)
 – First line of defense in maintaining good C.P.
 – Effectiveness of C.P.
 – Proper Instruments

– Readings:
 • Distribution
 • Transmission
 • UST’s
 • AST’s
What to Monitor

• **Test Stations**

 – **Condition**

 • Repair or replace broken or lost stations.

 – Connections to Pipe.

 – Service lines as test points for mains.

• **Current Flow**

 – On Pipelines

 – Anode Outputs
What to Monitor

• Rectifiers
 – 6X per year not to exceed 2 ½ mo.
 – Physical Inspection
 • Check cabinet for presence of voltage first
 – Outputs
 – Efficiency:
 Percent Efficiency = \(\frac{DC\ Power\ Out}{AC\ Power\ In} \times 100 \)
 DC power out (watts) = \(V_{dc} \times I_{dc} \)
 *If a watt-hour meter is used to determine input power, use the following formula:
 AC Input Power = \(\frac{3,600 \times K \times N}{T} \)
 *Where K= meter constant (shown on face of meter as kh), N= # of revolutions of the disk (60 sec. minimum), and T = time in seconds of observation
What to Monitor

• **Galvanic Anodes**
 - Current Output
 • Ammeter
 • Shunts
 - Life Calculations
 - Clamp on Ammeter

• **Critical Bonds**
 - 6X per year not to exceed 2 ½ mo.
 - Non-critical – 1X per year
 - Importance
What to Monitor

• **Unprotected Pipe**
 – Pipe w/o full C.P.
 – CFR 192.465
 • Re-evaluate every 3 years not to exceed 39 mo.
 – Hot Spot C.P.

• **Exposed Buried Pipe**
 – Bare or poorly coated (Gas)
 – All pipe (liquid)

• **Above Grade Pipe**
 – Atmospheric Corrosion
What to Monitor

• Isolation
 – Shorts
 – Methods
 – Repairs
 – Need to keep effective

– Section 192.467 of the DOT regulations covers the installation and testing of electrical isolation.
Record Keeping

• Required by D.O.T. regulation Section 192.491.
• Provides history of operation and maintenance of C.P.
• Provides a basis for scheduling repairs or maintenance.
• As built drawings
• Keep for the life of structure
If you don’t Monitor!

- Safety – Loss of life and or injuries
- Violations – Fines
- Malfunctions
- Losses
 - Product
 - Investments/Assets

Don’t bury It & Forget It! – C.P. needs Maintenance
Summary

– Discussed reasons to monitor
– Discussed what to monitor
– Identified Regulatory requirements
– Discussed the importance of Record Keeping
Question?

Comments

Thank you for Attending the Purdue Basic Session